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ABSTRACT

It is well known that the perceived level of reverberation

depends on both the input audio signal and the impulse re-

sponse. This work aims at quantifying this observation and

predicting the perceived level of late reverberation based on

separate signal paths of direct and reverberant signals, as

they appear in digital audio effects. A basic approach to the

problem is developed and subsequently extended by consid-

ering the impact of the reverberation time on the prediction

result. This leads to a linear regression model with two input

variables which is able to predict the perceived level with

high accuracy, as shown on experimental data derived from

listening tests. Variations of this model with different degrees

of sophistication and computational complexity are compared

regarding their accuracy. Applications include the control of

digital audio effects for automatic mixing of audio signals.

Index Terms— Intelligent Digital Audio Effects, Audi-

tory Perception, Artificial Reverberation

1. INTRODUCTION

The aim of this work is to devise a method for predicting the

perceived level of reverberation in speech and music when the

direct signal and the reverberation impulse response (RIR)

are separately available. This functionality is, e.g., desired

for applications where an artificial reverberation processor is

operated in an automated way and needs to adapt its param-

eters to the input signal such that the perceived level of the

reverberation matches a target value. It is noted that the term

reverberance while alluding to the same theme, does not ap-

pear to have a commonly accepted definition which makes it

difficult to use as a quantitative measure in a listening test and

prediction scenario.

Artificial reverberation processors are often implemented

as linear time-invariant systems and operated in a send-return

signal path, as depicted in Figure 1, with pre-delay d, RIR and

a scaling factor g for controlling the direct-to-reverberation

ratio (DRR). When implemented as parametric reverberation

processors, they feature a variety of parameters, e.g. for con-

trolling the shape and the density of the RIR, and the inter-
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Fig. 1. Block diagram of an artificial reverberation processor.

channel coherence (ICC) of the RIRs for multi-channel pro-

cessors in one or more frequency bands.

These parameters have an impact on the resulting audio

signal in terms of perceived level, distance, room size, col-

oration and sound quality. Furthermore, the perceived charac-

teristics of the reverberation depend on the temporal and spec-

tral characteristics of the input signal [1]. Focusing on a very

important sensation, namely loudness, it can be observed that

the loudness of the perceived reverberation is monotonically

related to the non-stationarity of the input signal. Intuitively

speaking, an audio signal with large variations in its envelope

excites the reverberation at high levels and allows it to be-

come audible at lower levels. In a typical scenario where the

long-term DRR expressed in decibels is positive, the direct

signal can mask the reverberation signal almost completely at

time instances where its energy envelope increases. On the

other hand, whenever the signal ends, the previously excited

reverberation tail becomes apparent in gaps exceeding a min-

imum duration determined by the slope of the post-masking

(at maximum 200 ms) and the integration time of the auditory

system (at maximum 200 ms for moderate levels).

To illustrate this, Figure 2 shows the time signal envelopes

of a synthetic audio signal and of an artificially generated re-

verberation signal. An RIR with a short pre-delay of 50 ms is

used here, omitting early reflections and synthesizing the late

part of the reverberation with exponentially decaying white

noise [2]. The input signal has been generated from a har-

monic wide-band signal and an envelope function such that

one event with a short decay and a second event with a long

decay are perceived. While the long event produces more

total reverberation energy, it comes to no surprise that it is

the short sound which is perceived as being more reverber-

Bean Sidhe
Typewriter
978-1-4577-0274-7/11/$26.00 ©2011 IEEE                                                                                   DSP2011



 

 

E
n
v
el

o
p
e

m
ag

n
it

u
d
e

[d
B

]

Time [s]
0 1 2 3 4 5

0

-20

-40

-60

direct signal

reverberation

mixture signal

Fig. 2. Example of time signal envelopes of an audio sig-

nal (solid line), the reverberation signal (dashed line), and the

mixture of both signals (dotted line).

ant. Where the decaying slope of the longer event masks the

reverberation, the short sound already disappeared before the

reverberation has built up and thereby a gap is open in which

the reverberation is perceived. Please note that the defini-

tion of masking used here includes both complete and partial

masking [3].

Although such observations have been made many times

[4, 5, 6], it is still worth emphasizing them because it illus-

trates qualitatively why models of partial loudness can be ap-

plied in the context of this work. In fact, it has been pointed

out that the perception of reverberation arises from stream

segregation processes in the auditory system [4, 5, 6] and is

influenced by the partial masking of the reverberation due to

the direct sound.

The considerations above motivate the use of loudness

models. Related investigations were performed by Lee et.al.

and focus on the prediction of the subjective decay rate of

RIRs when listening to them directly [7] and on the effect of

the playback level on reverberance [8]. A predictor for rever-

berance using loudness-based early decay times is proposed

in [9]. In contrast to this work, the prediction methods pro-

posed here process the direct signal and the reverberation sig-

nal with a computational model of partial loudness (and with

simplified versions of it in the quest for low-complexity im-

plementations) and thereby consider the influence of the input

(direct) signal on the sensation. Recently, Tsilfidis and Mour-

jopoulus [10] investigated the use of a loudness model for the

suppression of the late reverberation in single-channel record-

ings. An estimate of the direct signal is computed from the

reverberant input signal using a spectral subtraction method,

and a reverberation masking index is derived by means of a

computational auditory masking model, which controls the

dereverberation processing.
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Fig. 3. Loudness and partial loudness of the example signal:

total loudness (dotted line), partial loudness of direct signal

(solid line) and of the reverberation signal (dashed line).

The implementation of the loudness model used here fol-

lows the descriptions in [11, 12] with modifications as de-

tailed in Subsection 2.1. The training and the validation of

the prediction uses data from listening tests described in [13]

and briefly summarized in Subsection 2.2. The application of

the loudness model for predicting the perceived level of late

reverberation is described in Subsections 2.3 and 2.4. Exper-

imental results are presented in Section 3 and conclusions are

given in Section 4.

2. DERIVATION OF THE METHOD

This section describes the implementation of a model of par-

tial loudness, the listening test data that was used as ground

truth for the computational prediction of the perceived level

of reverberation, and a proposed prediction method which is

based on the partial loudness model.

2.1. A model of partial loudness

The loudness model computes the partial loudness Nx,n [k] of

a signal x [k] when presented simultaneously with a masking

signal n [k]

Nx,n [k] = f(x [k] , n [k]). (1)

Although early models have dealt with the perception of

loudness in steady background noise, some work exists on

loudness perception in backgrounds of co-modulated random

noise [14], complex environmental sounds [12], and music

signals [15]. Figure 3 illustrates the total loudness and the par-

tial loudness of its components of the example signal shown

in Figure 2, computed with the loudness model used here.
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Fig. 4. Block diagram of the loudness model.

The model used in this work is similar to the models

in [11, 12] which itself drew on earlier research by Fletcher,

Munson, Stevens, and Zwicker, with some modifications as

described in the following. A block diagram of the loudness

model is shown in Figure 4. The input signals are processed

in the frequency domain using a Short-time Fourier transform

(STFT). In [12], 6 DFTs of different lengths are used in order

to obtain a good match for the frequency resolution and the

temporal resolution to that of the human auditory system at

all frequencies. In this work, only one DFT length is used for

the sake of computational efficiency, with a frame length of

21 ms at a sampling rate of 48 kHz, 50% overlap and a Hann

window function. The transfer through the outer and middle

ear is simulated with a fixed filter. The excitation function is

computed for 40 auditory filter bands spaced on the equivalent

rectangular bandwidth (ERB) scale using a level dependent

excitation pattern. In addition to the temporal integration

due to the windowing of the STFT, a recursive integration is

implemented with a time constant of 25 ms, which is only

active at times where the excitation signal decays.

The specific partial loudness, i.e., the partial loudness

evoked in each of the auditory filter band, is computed from

the excitation levels from the signal of interest (the stimulus)

and the interfering noise according to Equations (17)-(20)

in [11]. These equations cover the four cases where the signal

is above the hearing threshold in noise or not, and where the

excitation of the mixture signal is less than 100 dB or not. If

no interfering signal is fed into the model, i.e. n [k] = 0, the

result equals the total loudness Nx [k] of the stimulus x [k].

2.2. Description of listening tests and experimental data

In order to assess the suitability of the described loudness

model for the task of predicting the perceived level of the

late reverberation, a corpus of ground truth generated from

listener responses is necessary. To this end, data from an in-

vestigation featuring several listening tests [13] is used in this

paper which is briefly summarized in the following. Each

listening test consisted of multiple graphical user interface

screens which presented mixtures of different direct signals

with different conditions of artificial reverberation. The lis-

teners were asked to rate the perceived amount of reverbera-

tion on a scale from 0 to 100 points. In addition, two anchor

signals were presented at 10 points and at 90 points. The an-

chor signals were created from the same direct signal with

different conditions of reverberation.

The direct signals used for creating the test items were

monophonic recordings of speech, individual instruments

and music of different genres with a length of about 4 sec-

onds each. The majority of the items originated from ane-

choic recordings but also commercial recordings with a small

amount of reverberation were used.

The RIRs represent late reverberation and were generated

using exponentially decaying white noise with frequency de-

pendent decay rates. The decay rates are chosen such that the

reverberation time decreases from low to high frequencies,

starting at a base reverberation time T60. Early reflections

were neglected in this work. The reverberation signal r [k]
and the direct signal x [k] were scaled and added such that the

ratio of their average loudness measure according to ITU-R

BS.1770 [16] matches a desired DRR and such that all test

signal mixtures have equal long-term loudness. All partici-

pants in the tests were working in the field of audio and had

experience with subjective listening tests.

The ground truth data used for the training and the ver-

ification / testing of the prediction method were taken from

two listening tests and are denoted by A and B, respectively.

The data set A consisted of ratings of 14 listeners for 54 sig-

nals. The listeners repeated the test once and the mean rat-

ing was obtained from all of the 28 ratings for each item.

The 54 signals were generated by combining 6 different di-

rect signals and 9 stereophonic reverberation conditions, with

T60 ∈ {1, 1.6, 2.4} s and DRR ∈ {3, 7.5, 12} dB, and no

pre-delay.

The data in B were obtained from ratings of 14 listeners

for 60 signals. The signals were generated using 15 direct

signals and 36 reverberation conditions. The reverberation

conditions sampled four parameters, namely T60, DRR, pre-

delay, and ICC. For each direct signal 4 RIRs were chosen

such that two had no pre-delay and two had a short pre-delay



r MAE RMSE

R̂b, T 0.76 9.7 12.1

R̂b, V 0.76 10.4 12.6

R̂e, T 0.85 8.3 10.0

R̂e, V 0.85 8.3 10.6

Table 1. Evaluation metrics of the prediction of R̂b and R̂e

for training (T) and testing (V).

of 50 ms, and two were monophonic and two were stereo-

phonic.

2.3. Using the loudness model for predicting the per-

ceived level of late reverberation

The basic input feature for the prediction method is computed

from the difference of the partial loudness Nr,x [k] of the re-

verberation signal r [k] (with the direct signal x [k] being the

interferer) and the loudness Nx,r [k] of x [k] (where r [k] is

the interferer), according to Equation 2.

∆Nr,x [k] = Nr,x [k] − Nx,r [k] (2)

The rationale behind Equation (2) is that the difference

∆Nr,x [k] is a measure of how strong the sensation of the re-

verberation is compared to the sensation of the direct signal.

Taking the difference was also found to make the prediction

result approximately invariant with respect to the playback

level. The playback level has an impact on the investigated

sensation [17, 8], but to a more subtle extent than reflected

by the increase of the partial loudness Nr,x with increasing

playback level. Typically, musical recordings sound more re-

verberant at moderate to high levels (starting at about 75-80

dB SPL) than at about 12 to 20 dB lower levels. This ef-

fect is especially obvious in cases where the DRR is positive,

which is valid “for nearly all recorded music” [18], but not

in all cases for concert music where “listeners are often well

beyond the critical distance” [6].

The decrease of the perceived level of the reverberation

with decreasing playback level is best explained by the fact

that the dynamic range of reverberation is smaller than that

of the direct sounds (or, a time-frequency representation of

reverberation is more dense whereas a time-frequency rep-

resentation of direct sounds is more sparse [19]). In such a

scenario, the reverberation signal is more likely to fall below

the threshold of hearing than the direct sounds do.

2.4. Prediction model

The prediction methods described in the following are linear

and use a least squares fit for the computation of the model

r MAE RMSE

∆Nm−x, T 0.81 9.0 11.2

∆Nm−x, V 0.81 9.0 11.1

∆Nr−m, T 0.80 9.5 11.3

∆Nr−m, V 0.80 10.1 12.7

∆Nr−x, T 0.83 8.8 10.5

∆Nr−x, V 0.83 9.1 11.1

Table 2. Evaluation metrics obtained when using the total

loudness of separated signals and mixture signal, for training

(T) and testing (V). See Equations (5)-(7) for an explanation

of the loudness features.

coefficients. The simple structure of the predictor is advanta-

geous in situations where the size of the data sets is limited,

which could lead to overfitting of the model when using re-

gression methods with more degrees of freedom, e.g. neural

networks. The baseline predictor R̂b is derived by the linear

regression according to Equation (3) with coefficients ai, with

K being the length of the signal in frames,

R̂b = a0 + a1

1

K

K∑

k=1

∆Nr,x [k] . (3)

The model has only one independent variable, i.e. the

mean of ∆Nr,x [k]. To track changes and to be able to im-

plement a real-time processing, the computation of the mean

can be approximated using a leaky integrator, but this is not

investigated here. The model parameters derived when using

data set A for the training are a0 = 48.2 and a1 = 14.0,

where a0 equals the mean rating for all listeners and items.

Figure 5 depicts the predicted sensations for data set A.

It can be seen that the predictions are moderately correlated

with the mean listener ratings with a correlation coefficient of

0.71. Please note that the choice of the regression coefficients

does not affect this correlation. As shown in the lower plot,

for each mixture generated by the same direct signals, the

points exhibit a characteristic shape centered close to the di-

agonal. This shape indicates that although the baseline model

R̂b is able to predict R to some degree, it does not reflect the

influence of T60 on the ratings. The visual inspection of the

data points suggests a linear dependency on T60. If the value

of T60 is known, as is the case when controlling an audio ef-

fect, it can be easily incorporated into the linear regression

model to derive an enhanced prediction

R̂e = a0 + a1

1

K

K∑

k=1

∆Nr,x [k] + a2T60. (4)

The model parameters derived from the data set A are

a0 = 48.2, a1 = 12.9, a2 = 10.2. The results are shown in
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Fig. 5. The predictions of the baseline model and the ref-

erences for data set A. Symbols denote mixtures originat-

ing from the same direct signal. The correlation coefficient is

0.71. The lower plot shows all mixtures originating from the

first 4 direct signals separately, together with the centroids

of their points (x-mark). The arrows show the direction of

change of the RIR parameters.

Figure 6 separately for each of the data sets. The evaluation

of the results is described in more detail in the next section.

3. FURTHER EXPERIMENTS AND RESULTS

In the following, the models are evaluated using the correla-

tion coefficient r, the mean absolute error (MAE) and the

root mean squared error (RMSE) between the mean listener

ratings and the predicted sensation. The experiments are

performed as two-fold cross-validation, i.e. the predictor is

trained with data set A and tested with data set B, and the

experiment is repeated with B for training and A for testing.

The evaluation metrics obtained from both runs are averaged,

separately for the training and the testing.
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(a) Training data A. Symbols denote direct signals.
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Fig. 6. The listener ratings and the outputs of the prediction

model R̂e, trained with data set A and tested with data set B.

The results are shown in Table 1 for the prediction models

R̂b and R̂e. The predictor R̂e yields accurate results with an

RMSE of 10.6 points. The average of the standard devia-

tion of the individual listener ratings per item are given as a

measure for the dispersion from the mean (of the ratings of all

listeners per item) as σA = 13.4 for data set A and σB = 13.6
for data set B. The comparison to the RMSE indicates that

R̂e is at least as accurate as the average listener in the listening

test.

The accuracies of the predictions for the data sets differ

slightly, e.g. for R̂e both MAE and RMSE are approxi-

mately one point below the mean value (as listed in the ta-

ble) when testing with data set A and one point above av-

erage when testing with data set B. The fact that the evalua-

tion metrics for training and test are comparable indicates that

overfitting of the predictor has been avoided.

In order to facilitate an economic implementation of such

prediction models, the following experiments investigate how

the use of loudness features with less computational complex-

ity influence the precision of the prediction result. The exper-

iments focus on replacing the partial loudness computation by



estimates of total loudness and on simplified implementations

of the excitation pattern.

Instead of using the partial loudness difference ∆Nr,x [k],
three differences of total loudness estimates are examined,

with the loudness of the direct signal Nx [k], the loudness

of the reverberation Nr [k], and the loudness of the mixture

signal Nm [k], as shown in Equations (5)-(7), respectively.

∆Nm−x [k] = Nm [k] − Nx [k] (5)

Equation (5) is based on the assumption that the perceived

level of the reverberation signal can be expressed as the differ-

ence (increase) in overall loudness which is caused by adding

the reverb to the dry signal.

Following a similar rationale as for the partial loudness

difference in Equation (2), loudness features using the dif-

ferences of total loudness of the reverberation signal and the

mixture signal or the direct signal, respectively, are defined in

Equations (6) and (7). The measure for predicting the sensa-

tion is derived from as the loudness of the reverberation signal

when listened to separately, with subtractive terms for mod-

elling the partial masking and for normalization with respect

to playback level derived from the mixture signal or the direct

signal, respectively.

∆Nr−m [k] = Nr [k] − Nm [k] (6)

∆Nr−x [k] = Nr [k] − Nx [k] (7)

Table 2 shows the results obtained with the features based

on the total loudness and reveals that in fact two of them,

∆Nm−x [k] and ∆Nr−x [k], yield predictions with nearly the

same accuracy as R̂e. It remains to be investigated whether

this unexpectedly good performance generalizes and also

holds for more diverse reverberation conditions, especially

when using larger values for the pre-delay.

Finally, in an additional experiment, the influence of the

implementation of the spreading function is investigated. This

is of particular significance for many application scenarios,

because the use of the level dependent excitation patterns de-

mands implementations of high computational complexity.

The experiments with a similar processing as for R̂e but us-

ing one loudness model without spreading and one loudness

model with level-invariant spreading function led to the re-

sults shown in Table 3. Somewhat surprisingly, the influence

of the spreading seems to be negligible. It is assumed that

for spectrally sparse signals the spreading will play a larger

role, however, this has not been demonstrated with the data

sets used here.

4. CONCLUSIONS AND FUTURE WORK

This work presented an investigation in simple and robust pre-

diction of the perceived level of late reverberation in speech

and music using loudness models of varying computational

r MAE RMSE

no spreading, T 0.84 8.4 10.1

no spreading, V 0.84 8.8 10.6

fixed spread., T 0.85 8.3 10.1

fixed spread., V 0.85 8.7 10.7

Table 3. Evaluation metrics for loudness features without

spreading and with level-invariant spreading, for training (T)

and testing (V).

complexity. The prediction models have been trained and

evaluated using subjective data derived from three listening

tests. As a starting point, the use of a partial loudness model

has led to a prediction model with high accuracy when the

T60 of the RIR is known. This result is also interesting from

the perceptual point of view when considering that model of

partial loudness has not been developed with stimuli of direct

and reverberant sound.

Subsequent modifications of the computation of the input

features for the prediction method led to a series of simpli-

fied models which were shown to achieve comparable per-

formance for the data sets at hand. These modifications in-

cluded the use of total loudness models and simplified spread-

ing functions. Future work will investigate the prediction of

sensations evoked by more diverse RIRs including early re-

flections and larger pre-delays. Also, the perceived loudness

contribution of other types of additive audio effects can be

investigated in a similar manner.
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