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ABSTRACT

This paper presents a system for recovering the sectional

form of a musical piece: segmentation and labelling of mu-

sical parts such as chorus or verse. The system uses three

types of acoustic features: mel-frequency cepstral coeffi-

cients, chroma, and rhythmogram. An analysed piece is

first subdivided into a large amount of potential segments.

The distance between each two segments is then calculated

and the value is transformed to a probability that the two

segments are occurrences of a same musical part. Different

features are combined in the probability space and are used

to define a fitness measure for a candidate structure descrip-

tion. Musicological knowledge of the temporal dependen-

cies between the parts is integrated into the fitness measure.

A novel search algorithm is presented for finding the de-

scription that maximises the fitness measure. The system is

evaluated with a data set of 557 manually annotated pop-

ular music pieces. The results suggest that integrating the

musicological model to the fitness measure leads to a more

reliable labelling of the parts than performing the labelling

as a post-processing step.

1 INTRODUCTION

Western popular music pieces tend to follow a sectional form

where the piece can be thought to be constructed of smaller

parts (e.g., verse or chorus) which may be repeated during

the piece, often with slight variations. The analysis of mu-

sic structure is the process of recovering a description of this

kind from audio input.

Automatic music structure analysis enables several ap-

plications, including a structure-aware music player [4] and

music summarisation or thumbnailing [3, 12, 9] (see [8] for

a discussion of further applications). A popular aim has

been to locate a representative clip of the piece, such as the

chorus, but there are also systems which aim to describe the

structure of the whole piece, for example [2, 7].

In the proposed method (block diagram illustrated in Fig-

ure 1), the audio content is described using three sets of fea-
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Figure 1. Analysis system block diagram.

tures: mel-frequency cepstral coefficients (MFCCs), chroma,

and rhythmogram, to address different perceptual dimen-

sions of music. 1 The use of multiple features is motivated

by [1], which suggests that changes in timbre and rhythm

are important cues for detecting structural boundaries in ad-

dition to repetitions. A large set of candidate segmentations

of the piece is first constructed. All non-overlapping seg-

ment pairs are then compared based on the features and two

different distance measures: one based on the average value

of a feature over a segment and the other matching the two

temporal sequences of features in the segments. Utilising

the distance values we calculate the probability of the two

segments to be occurrences of same musical part (i.e., re-

peats). The values are used as terms in a fitness measure

which is used to rank different candidates for the piece struc-

ture description.

The found structural description consists of subdivision

of the piece into segments and of forming groups of seg-

ments that are occurrences of the same musical part. To

make the description more informative, the segment groups

are automatically named using musical part labels, such as

“verse” or “chorus”. The labelling is done by utilising a mu-

sicological model, in practice an N-gram model for musical

parts estimated from a manually annotated data set. Two dif-

ferent strategies for the labelling are evaluated: either per-

1 A similar set of three features have been used earlier in [5], but the

features were considered individually instead using a combination of them.
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forming it as a post-processing step after the segments and

their grouping has been decided, or by integrating it into the

fitness measure for the descriptions. The latter method al-

lows assigning the labels already while searching for the de-

scription, and enable utilising the potentially useful musical

information of the part N-grams in the search.

The main original contributions of this paper concern the

last two blocks in Figure 1, the pairwise matching of seg-

ments, the search algorithm, and musicological model for

naming the found parts.

The performance of the proposed system is evaluated us-

ing a data set of 557 popular music pieces with manually

annotated structure information. Different configurations of

the overall system are studied in order to determine potential

points for improvement.

2 PROPOSED METHOD

Different parts of the proposed method are described now in

more detail.

2.1 Feature Extraction

The system uses three sets of acoustic features, all of them

with two different time scales to provide the necessary in-

formation for further analysis. The extraction starts by esti-

mating the locations of beat (tactus) pulses using the method

from [6]. The pulse periods are halved by inserting an extra

pulse between the estimated location to alleviate problems

due to possible π-phase errors. The pulses are used to cre-

ate a beat-synchronised time grid for making the features

less sensitive to tempo variations.

MFCCs are used to describe the timbral content of the

signal. They are calculated using 42-band filter bank ener-

gies which are decorrelated with discrete cosine transform.

The lowest coefficient is discarded, and the following 12 co-

efficients are used as the feature. The MFCCs are calculated

with 92.9 ms frames with 50% overlap.

The harmonic content is described with chroma, which

is calculated using the method described in [14]. First, the

saliences of fundamental frequencies in the range 80–640 Hz

are estimated. The linear frequency scale is transformed to

a musical one by retaining only the largest salience value

in each semitone range. The chroma vector of length 12 is

obtained by summing the octave equivalence classes. The

frame division is the same as with MFCCs.

The rhythmic content is described with rhythmogram pro-

posed in [5], but replacing the original perceptual spectral

flux front-end with an onset accent signal obtained as a by-

product of the beat estimation. After removing the mean

value from the accent signal, it is divided into several sec-

onds long, overlapping frames with spacing corresponding

to the 46.4 ms frame hop on MFCCs and chroma calcula-

tion. From each frame, autocorrelation is calculated and the
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Figure 2. Examples of SDMs calculated using chroma fea-

tures with two different time-scale parameters. The SDM

on the left was calculated with a low cut-off frequency mak-

ing different parts resemble blocks, and the SDM on right

was calculated with a high cut-off making −45◦ stripes vis-

ible. All axes show time in seconds and a darker pixel value

denotes lower distance. The overlaid grid illustrates the an-

notated part borders. The part labels are indicated as: intro

(I), theme (T), verse (V), chorus (C), solo (S), outro (O).

values below the lag of 2 seconds are retained. The values

are normalised to produce value 1 on lag 0.

Beat-synchronised feature vectors are obtained by calcu-

lating the average value of a feature between each two beat

pulses. From each feature, two versions focusing on dif-

ferent time scales are produced. With MFCCs and chroma,

this is done by low-pass filtering the feature vector series

over time with second order Butterworth IIR filters. The fil-

ter cut-off frequency ω is determined by ω = 1/τ , where

τ is the time scale parameter. The used values of τ for

MFCCs are 8 for finer time scale and 64 for coarse time

scale, for chroma the values are 0.5 and 64. The filtering is

done twice along time, first forward and then backwards to

double the magnitude response of the filters and to cancel

out phase distortions. The rhythmogram feature is not fil-

tered, but instead the length of the autocorrelation window

is adjusted to a length which corresponds to 4 beat frames

for the shorter time scale and 32 beat frames for the longer

one. Each feature is normalised to zero mean and unity vari-

ance over the whole piece. The feature vector in beat frame

k is denoted by fk. As the remaining operations are similar

for all features and time scales, the same notation is used for

all feature vectors. The above-mentioned time scale param-

eter values were selected based on the results from [10].

2.2 Self-distance Matrices

Using the extracted feature vector series, self-distance ma-

trices (SDMs) are calculated. Each element in the SDM

denotes the distance between feature vectors in frames k
and l, and is calculated with the cosine distance measure

Dk,l = d (fk, fl). Figure 2 illustrates the SDMs calculated

for an example pieces using the chroma features.



2.3 Formal Model of Structure Description

The method searches for a description E for the structure of

a piece S, which is represented as a sequence of beat frames

S = c1, c2, . . . , cK , K being the length of the piece in beats.

The sequence S can be divided into M subsequences of one

or more consecutive frames S = s1, s2, . . . , sM , where each

subsequence is a segment sm = ck, ck+1, . . . , ck+L−1. A

segment represents an individual occurrence of a musical

part. For each segment sm, there is also associated infor-

mation about the group gm where it belongs to. The com-

bination of segment and group information is denoted by

(s, g)m. All possible segmentations and groupings of the

piece form a set S = {(s, g)1, (s, g)2, . . . , (s, g)Z}, where

Z is the total number of all segments and groupings. The

set of segments with the same group assignment represents

all occurrences of a musical part (for example a chorus).

A structure description E ⊂ S consists of the division of

the entire piece into non-overlapping segments and of the

grouping of the segments.

2.4 Border Candidates

Because the number of possible segmentations is very high,

a set of potential segment border candidates is generated to

narrow the search space. Not all of the candidates have to

be used in the final segmentation, but the final segment bor-

ders have to be selected from the set. The main requirement

for the border candidate generation method is to be able to

detect as many of the true borders as possible while keeping

the total amount of the borders still reasonable.

The border candidates are generated using the novelty

detection method from [3]. A Gaussian tapered checker-

board kernel is correlated along the main diagonal of the

SDMs to produce novelty vectors. The vectors from differ-

ent features are summed and peaks in the resulting vector

are searched using a median based dynamic thresholding.

2.5 Segment Distance Measures

All segments between all pairs of border candidates are gen-

erated. These segments, when replicated with all possible

groupings, form the set S, from which the final description

is a subset. The fitness measure for the structure descrip-

tion operates on probabilities that two segments in the piece

are occurrences of the same musical part. The probability is

obtained by matching the features of the segments.

The matched two segments sm and sn define a submatrix

D̃[m,n] of the SDM. Two distance measures for the segment

pair are defined using this submatrix: stripe and block dis-

tances. The stripe distance dS (sm, sn) is calculated by find-

ing the minimum cost path through D̃[m,n] with dynamic

programming. No transition cost is applied, but instead the

total path cost is the sum of the elements along the path.

The local path constraint forces the path to take one step in

one or both directions at a time. The distance measure is

obtained by normalising the total path cost with the maxi-

mum of the two submatrix dimensions. The block distance

dB (sm, sn) is calculated as the average element value in the

submatrix D̃[m,n].

2.6 Probability Mapping

Given the acoustic distance d (sm, sn) 2 between two seg-

ments sm and sn, it is possible to define the probability

p (sm, sn) that the segments belong to the same group (are

occurrences of the same part) using a sigmoidal mapping

p (sm, sn) = p(gm = gn|d (sm, sn) = δ) (1)

=
1

1 + eAδ+B
, (2)

where δ is the observed distance value. The sigmoid pa-

rameters A and B are determined using two-class logistic

regression with Levenberg-Marquardt algorithm [13].

The probabilities obtained from the mapping of all six

distance values are combined with geometric mean. Heuris-

tic restrictions on the segment groupings can be enforced by

adjusting the pairwise probabilities. An example of such re-

striction is to set the segment pair probability to zero if the

segment lengths differ too much (ratio 6/5 was used as the

limit in the evaluations). The aggregated probability value

after adjustments is denoted by p̂ (sm, sn).

2.7 Fitness of a Description

A probabilistic fitness measure for different structure de-

scription candidates is defined using the segment pair prob-

abilities in the description E by

P (E) =
M
∑

m=1

M
∑

n=1

A (sm, sn)L (sm, sn), (3)

where

L (sm, sn) =

{

log (p̂ (sm, sn)) , if gm = gn

log (1 − p̂ (sm, sn)) , if gm 6= gn

. (4)

The weighting factor A (sm, sn) is the number of elements

in the submatrix D̃[m,n] defined by the two segments. It is

used to enable comparing descriptions with different num-

ber of segments, and its intuitive motivation is “the need to

cover the whole area of the SDM”.

The main concepts related to the calculation are illus-

trated in Figure 3. The short ticks in top and left side of

the figure are the locations of chunk borders. The descrip-

tion claims that the piece consists of five segments (A1, A2,

B1, B2, C) of varying lengths, and that segments A1 and

2 Similar definition applies to all three feature sets and two distance mea-

sures.
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Figure 3. Illustration of the concepts regarding the calcula-

tion of the overall probability of a description. See text for

details.

A2 belong to same group as well as B1 and B2. There is

a probability value assigned to each of the 25 submatrices,

denoting the acoustic probability that the segments defining

the submatrix belong to the same group. When evaluating

Eq. (4), the upper alternative is used with the shaded subma-

trices, whereas the lower alternative is used for all the other

submatrices.

The task to solve is to find the description E maximis-

ing the total log-probability of Eq. (3), given the acoustic

information embedded to the pairwise probabilities

EOPT = argmax
E

{P (E)} . (5)

2.8 Segment Labelling

The found description EOPT defines a segmentation of the

piece to musical sections and grouping of the segments which

are occurrences of the same part. However, the groups have

no musically meaningful labels. From the application point

of view, the knowledge of the “musical role” of each part

would be valuable. Musical pieces tend to follow certain

forms when considering the sequences formed by the part

names, e.g., “intro, verse, chorus, verse, chorus, chorus”.

These sequential dependencies are here modelled with N-

grams of length 3. The 12 most often occurring musical

part labels cover 90% of all part occurrences in the data set

and are retained; the other labels are replaced with an arti-

ficial label “MISC”. The estimated trigrams are smoothed

using Witten-Bell smoothing [15]. The musicological infor-

mation can be used in a post-processing stage to label the

segments, or integrated into the fitness measure.

2.8.1 Labelling as Post-processing

In post-process labelling, the description found using Eqs. (3)–

(4) is handled as a sequence of parts. Each of the groups

in the description is mapped on trial with a unique musical

part label in the trained vocabulary. The probability over the

resulting label sequence is evaluated by calculating the cu-

mulative Markov probability over the sequence and the most

probable labelling is chosen. The post-processing labelling

method is described in more detail in [11].

2.8.2 Integrated Labelling Model

As earlier experiments have shown the N-gram model to

be informative in labelling the structural descriptions, an

attempt is made to utilise this information already in the

search of the descriptions. This is done by modifying the

fitness measure of Eq. (3) to include a term containing the

probabilities pN from the N-grams:

P (E) =

M
∑

m=1

M
∑

n=1

A (sm, sn)L (sm, sn) (6)

+
w

M − 1

M
∑

o=1

log
(

pN (go|g1:(o−1))
)

M
∑

m=1

M
∑

n=1

A (sm, sn),

where w is the relative weight given for the labelling model. 3

In effect, the additional term is the average part label tran-

sition log-probability weighted with the total area of the

SDM. The labelling model likelihoods are normalised with

the number of transitions (M−1) to ensure that descriptions

with different number of parts would have equal weight for

the musicological model.

3 SEARCH ALGORITHM

Given all segments, segment pairs, and the probabilities that

a pair of segments are from the same group, the search al-

gorithm attempts for find the description EOPT maximising

the total fitness of Eq. (3) or Eq. (6). This section describes a

novel search algorithm Bubble token passing (BTP) solving

the optimisation task. An exhaustive search over all descrip-

tions as is possible, but it is computationally too heavy for

practical applications even with admissible search bound-

ing. The exhaustive search was used to verify the operation

of the greedy BTP algorithm presented next.

The proposed BTP can be seen as a variant of the N-best

token passing (TP). The states in the algorithm are formed

by the set S of all segments and all possible group assign-

ments to each segment. In other words, the problem is find-

ing the best path in a directed acyclic graph where the ver-

tices are the segments with group information and there is

an edge from a segment to the segments that start from the

same border the previous ends. Because of the form of the

total fitness measure of Eq. (3) or Eq. (6), the edge weights

depend on the earlier vertices occupied by the path. There-

fore, more efficient dynamic programming algorithms can

not be used.

In the conventional TP, tokens are propagated between

states time synchronously. Tokens record the travelled path

and the associated path probabilities. At each time instant,

the states take the best contained token, copy it and propa-

gate it to all connecting states updating the token path and

3 Values in the range 0.02–0.3 were noted to be most suitable in experi-

ments with a subset of the evaluation data.



probability. When tokens are arriving to a state, they are

sorted and only the best one is retained to be propagated at

the next iteration. In N-best TP the N best tokens are prop-

agated. [16]

The BTP operates as follows: an initial token is set to

a start state, it is replicated and propagated to all connect-

ing states updating the token information. The states store β
best tokens that have arrived and propagate α tokens at the

next iteration. If α < β, the tokens not propagated remain

in the state and they are considered for propagation in the

next iteration. After some iterations, tokens start arriving to

the end state. They contain the found paths (structural de-

scriptions) and the related probabilities (fitness measures).

As iterations are continued, more tokens “bubble” through

the states to the end state and more description alternatives

are found. It is likely that the found paths initially improve,

but after a while the improving stops. The iterations can be

stopped at any time, e.g., if the solution has converged or

there are no more tokens in the system.

The proposed algorithm contains some beneficial proper-

ties mostly based on the two parameters α and β. As the to-

kens are propagated in a best-first order, the algorithm finds

some reasonable solution fast and then continues improving

it. The search “beam width” can be controlled with α, while

β controls the the overall greediness. If the two are equal

the algorithm is approximately the N-best TP. If β is set to

infinity and the search is run until all tokens are out of the

system, the search is exhaustive and guaranteed to find the

global optimum. In experiment it was found to be sufficient

to propagate a moderate amount (α = 5− 50) of tokens at a

time while retaining larger amount of them (β = 50− 500).

With these values, the BTP was noted to find the same result

as the exhaustive search in almost all of the test cases with

considerably less computational cost. The exact values de-

pend on the number of possible states and their connectivity.

When the description labelling done as a post-processing

step, the search can be optimised by occupying different

groups in order which eliminates much of the search space. 4

4 RESULTS

The proposed algorithm is evaluated using 557 manually an-

notated pieces. The evaluation metrics are calculated from

different evaluation aspects. The effect of the segmentation

and border candidate generation is evaluated. In addition

to them, both alternatives for the musical part labelling are

evaluated. By comparing these two results, it is possible to

test if the musicological knowledge is able to provide useful

information for deciding which description is the best.

4 With the number of border candidates used in the evaluations (32), and

possible labels (13), there are approximately 3.1 · 10
35 different descrip-

tions E. With post-processing labelling the amount is reduced to 1.1·10
26.

4.1 Data

The evaluation data set consists of 557 Western popular mu-

sic pieces. 5 The pieces were selected to provide a represen-

tative sample of the music played on mainstream radio. The

pieces are mainly from the pop/rock genre, but also some

pieces from jazz, blues and schlager are present. For each

piece, the sectional form was annotated by hand by seg-

menting and labelling the musical parts. The annotations

were made by two research assistants with some musical

background. The simulations were run using 10-fold cross-

validation scheme. At each iteration, the training subset was

used to train the labelling model N-grams and the distance

to probability mapping function parameters. The presented

results are averaged over all folds.

4.2 Evaluation Metrics

Two different metrics are used in the evaluations: frame

pairwise grouping F-measure, and total frames labelled cor-

rectly. The first measure has been used in evaluation of a

structure analysis algorithm in [7]. It considers all beat-

frame pairs and whether or not the frames in the pair are

assigned correctly in the same group. The recall rate Rr is

calculated as the ratio of correctly found frame pairs with

the frames assigned to the same group to the number of all

segments pair from the same group. The precision rate Rp

is the ratio of correctly found frame pairs to the claimed

frame pairs. The F-measure is calculated from these two as

F = 2RpRr/(Rp + Rr).
The second used evaluation metric is motivated by the

desired final output of the system: the result should be a

segmentation to musical parts and the labelling of each seg-

ment with the appropriate musical part name. The measure

is the amount of the piece assigned with the correct musical

part name.

4.3 Evaluation Results

The evaluation results are given in Table 1. Results are

shown for six different system configurations. First, the ef-

fect of segment boundary candidate generation (see Sec. 2.4)

is studied by considering three different cases:

• “full”: Fully automatic system which generates the

segment border candidates using the novelty vector.

The system has to decide at each candidate border

should is be included, group the created segments,

and label the groups. (This configuration uses all fea-

tures except rhythmogram stripes.)

• “bord”: The border candidate set is taken from the

annotated segmentation points. Otherwise the same

as above. (Uses MFCC and chroma stripes.)

5 Full list of the pieces is available at

<http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html>.

http://www.cs.tut.fi/sgn/arg/paulus/TUTstructure07_files.html


System F (%) Rp (%) Rr (%) label hit (%)

full w/ LM 61.4 64.2 63.9 39.1

full post-LM 61.7 65.9 63.1 36.1

bord w/ LM 77.0 80.5 77.8 46.8

bord post-LM 77.9 81.8 78.2 45.4

segs w/ LM 86.1 96.0 80.6 49.3

segs post-LM 86.2 95.6 81.1 46.5

Table 1. Evaluation results for six different system configu-

rations and four evaluation measure. See text for details.

• “segs”: The segmentation is taken from the ground

truth. The system has to group the different occur-

rences of a part together and label the groups. (Uses

MFCC and chroma stripes.)

Secondly, the strategies of using the musicological model

are: “w/ LM” when then labelling is done during the de-

scription search using Eq. (6), and “post-LM” when the de-

scription search is done with Eq. (3) and the labelling is done

as post-processing.

The results indicate that the method for generating the

border candidates is currently a bottle-neck for the system,

and should be considered in future work. The integrated us-

age of musicological model in the fitness measure does not

seem to have a big effect on the result when looking at the F-

measure (the difference is statistically insignificant, the level

of p < 0.05 would require F-measure difference of at least

1.5 %-units). From the point of view of the label hit mea-

sure, the integrated labelling improves the results slightly,

but the improvement is statistically significant (p < 0.05)

only in the results obtained from fully automatic system.

Comparing the results for “full” with [7] where the same F-

measure was used, the performance is very similar, although

it should be noted that differring data sets were used.

5 CONCLUSIONS

A method for analysing the sectional form of a music piece

was presented. The method uses a probabilistic fitness mea-

sure for comparing different structural descriptions. This

allows the focus of the development work to be concen-

trated on the definition of the fitness measure and its terms

which is typically more intuitive and conceptually simpler

than algorithm development. A musicological model of the

sequential dependencies of musical parts was integrated to

the proposed fitness measure. The integration improves the

performance of the system when measuring the amount of

time where the piece is assigned with the correct musical

part label. A novel algorithm was presented for searching

a description which maximises the defined fitness measure.

The algorithm can be controlled with two intuitive param-

eters and its average- and worst-case performance is con-

siderably better than that of an exhaustive search. Future

work will concentrate on improving the method that gener-

ates segment border candidates since it seems to be a bottle-

neck of the current system.
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