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Abstrat. This paper desribes a method for labelling strutural partsof a musial piee. Existing methods for the analysis of piee struture of-ten name the parts with musially meaningless tags, e.g., �p1�, �p2�, �p3�.Given a sequene of these tags as an input, the proposed system assignsmusially more meaningful labels to these, e.g., given the input �p1, p2,p3, p2, p3� the system might produe �intro, verse, horus, verse, horus�.The label assignment is hosen by soring the resulting label sequeneswith Markov models. Both traditional and variable-order Markov modelsare evaluated for the sequene modelling. Searh over the label permu-tations is done with N-best variant of token passing algorithm. The pro-posed method is evaluated with leave-one-out ross-validations on twolarge manually annotated data sets of popular musi. The results showthat Markov models perform well in the desired task.
1 IntrodutionWestern popular musi piees often follow a setional form in whih the piee isonstruted from shorter units. These units, or musial parts, may have distintroles on the struture of the piee, and they an be named based on this role, forexample as �horus� or �verse�. Some of the parts may have several ourrenesduring the piee (e.g., �horus�) while some may our only one (e.g., �intro�).To date, several methods have been proposed to perform automati analysisof the struture of a musial piee from audio input, see [7℄ or [6℄ for a review.Majority of the methods do not assign musially meaningful labels to the stru-tural parts they loate. Instead, they just provide information about the order,possible repetitions, and temporal boundaries of the found parts. There also ex-ist a few methods that utilise musial models in the analysis, and the resultingstruture desriptions have musially meaningful labels attahed to the foundparts [10, 5℄.The musial piee struture an be used for example in a musi player user in-terfae allowing the user to navigate within the piee based on musial parts [3℄.The results of a user study with a musi player having suh a navigation abilitysuggest that the parts should be labelled meaningfully. The additional informa-tion of knowing whih of the parts is for instane �horus� and whih is �solo�was judged to be valuable [2℄.
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p1,p2,p3,p2,p3,p4 SYSTEM intro, verse, horus, verse...p1,p2,p2,p3,p2,p2 verse, horus, horus, solo....Fig. 1. Basi idea of the system. The system assigns meaningful labels to arbitrary tagsbased on a musial model. The mapping from tags to labels is determined separatelyfor eah input.

The proposed method does not perform the musial struture analysis fromaudio, but only labels strutural desriptions and should be onsidered as an add-on or an extension to existing struture analysis systems. So, the problem to besolved here is how to assign musially more meaningful part labels when givena sequene of tags desribing the struture of a musial piee. The operation isillustrated in Figure 1. As an example, the struture of the piee �Help!� by TheBeatles is �intro, verse, refrain, verse, refrain, verse, refrain, outro�, as given in [8℄.A typial struture analysis system might produe �p1,p2,p3,p2,p3,p2,p3,p4� asthe result, whih then would be the input to the proposed system. If the systemoperation was suessful, the output would be the assignment: �p1 → intro,p2 → verse, p3 → refrain, p4 → outro�.It is often said more or less seriously that popular musi piees tend to beof the same form, suh as �intro, verse, horus, verse, horus, solo, horus�.1The proposed method aims to utilise this stereotypial property by modellingthe sequential dependenies between part labels (ourrenes of musial parts)with Markov hains, and searhing the label assignment that maximises theprobability of the resulting label sequene. Evaluation show that the sequentialdependenies of musial parts are so informative that they an be used in thelabelling.The rest of the paper is strutured as following: Set. 2 desribes the proposedmethod. The labelling performane of the method is evaluated in Set. 3. Set. 4gives the onlusions of the paper.
2 Proposed MethodThe input to the system is a sequene of tags R1:K ≡ R1, R2, . . . , RK , and theproblem is to assign a musial label to eah of the unique tags so that no two tagsare assigned the same label. This assignment is de�ned as an injetive mappingfuntion f : T → L from input set T of tags to the output set L of musiallymeaningful labels, as illustrated in Figure 2. The mapping funtion transformsthe input tag sequene R1:K into a sequene of labels f(R1:K) = S1:K .The proposed methods assumes that the musial parts depend sequentiallyon eah other in the form of a Markov hain and that it is possible to predit thenext musial part given a �nite history of the preeding parts. This preditability1 Though statistis from two data sets of popular musi piees show that the struturesof the piees are more heterogeneous than was initially expeted, see Set. 3.1.
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T Lp1p2p3
f introversehorusbridgeoutro solo

Fig. 2. An example of the mapping funtion f : T → L. All tags in T are mapped toone label in L, but some labels in L may remain unused.
is used to sore di�erent mapping alternatives and the best mapping is then givenas the output of the system.
2.1 Markov ModelsMarkov models assume that the probability of a ontinuation Si+1 for sequene
S1:i depends only on a �nite history of the sequene S(i−N+1):i instead of thefull history, i.e., p(Si+1|s1:i) = p(si+1|S(i−N+1):i), where N is the length of theused history. This is also referred as the order of the resulting Markov model andgives rise to the alternative name of N-grams. Based on the Markov assumption.the overall probability of a sequene S1:K is obtained by

p(S1:K) =
K
∏

k=1

p(Sk|S(k−N):(k−1)). (1)
In the beginning of the sequene where there is not enough history available, itis possible to use a lower order model or pad the sequene from the beginningwith a speial symbol. [4℄The total N-gram probability of Eq. (1) is used to sore di�erent mappingfuntions by evaluating it for the output sequenes after the mapping f(R1:K) =
S1:K . The target is to �nd the mapping funtion fOPT that maximises the totalprobability

fOPT = argmax
f

{p (f(R1:K))}, f : T → L injetive. (2)
2.2 Optimisation AlgorithmThe maximisation problem is solved by using M-best2 variant of token pass-ing (TP) algorithm, more frequently used in speeh reognition [12℄. The mainpriniple of TP is that tokens t are propagated time synhronously between the2 Better known as the N-best token passing. The name is adjusted to avoid possibleonfusion with N-grams.



4 Jouni Paulus and Anssi Klapuristates of the model. Eah token knows the path it has travelled and aumu-lates the total probability over it. Based on the path probabilities, the M tokenswith the highest probabilities are seleted for propagation in eah state, they arerepliated and passed to all onneted states. The token path probabilities areupdated based on the transition probabilities between the states.The state spae of TP is formed from the possible labels in L, and the pathsof the tokens enode di�erent mapping funtions. The optimisation of Eq. (2)an be done by searhing the most probable path through the states (labels)de�ning the state transition probabilities with
p

(

fk(Rk) = li|R1:(k−1), fk−1

)

=

{

0, if DME
p(li|fk−1(R1:(k−1))), otherwise, (3)

where DME denotes the prediate �di�erent mapping exists�, whih is used toguarantee that the mapping funtion is injetive, and it is de�ned byDME = ∃j : (Rj = Rk ∧ fk−1(Rj) 6= li)∨(Rj 6= Rk ∧ fk−1(Rj) = li) , j ∈ [1, k−1].(4)In the equations above, p (fk(Rk) = li|R1:k, fk−1) denotes the probability of atoken to transition to the state orresponding to label li after it has travelledthe path fk−1(R1:(k−1)). The N-gram probability for label li when the preedingontext is fk−1(R1:(k−1)), is denoted as p(li|fk−1(R1:(k−1))). As the mappingis generated gradually, fk is used to denote the mapping after handling thesequene R1:k.Pseudoode of the algorithm is given in Algorithm 1. It searhes a mappingfuntion f : T → L from tags in input sequene to the possible label set. Foreah label l ∈ L, the probability π0(l) of that label to be the �rst label in thesequene and the probability the label the be the last πE(l) are de�ned. In themiddle of the sequene, the probability of the ontinuation given the preedingontext is obtained from Eq. (3).As the mapping depends on deisions done within the whole preeding his-tory, the Markov assumption is violated and the searh annot be done with moree�ient methods guaranteeing a globally optimal solution. This sub-optimalityhinders also the traditional TP, sine it might be that the optimal labelling maynot be the best one earlier in the sequene, and is therefore pruned during thesearh. The M-best variant of TP alleviates this problem by propagating M besttokens instead of only the best one. If all tokens were propagated, the methodwould �nd the globally optimal solution, but at a high omputational ost. Witha suitable number of tokens, a good result an be found with onsiderably lessomputation than with an exhaustive searh. An exhaustive searh was tested,but due to the large searh spae, it proved to be very ine�ient. However, itwas used to verify the operations of TP with a subset of the data. In that subset,the TP showed to �nd the same result as the exhaustive searh in almost all theases when storing 100 tokens at eah state.



Labelling the Strutural Parts of a Musi Piee with Markov Models 5Algorithm 1: Searh label mapping f : T → LInput sequene R1:K .Label spae L. Assoiated with eah label l ∈ L, there are input bu�er Il andoutput bu�er Ol.Tokens t with probability value t.p and label mapping funtion t.f .for l ∈ L do // initialisationInsert t to Il and assign t.p← π0(l)for k ← 1 to K dofor l ∈ L do
Ol ← Il // propagate to outputClear Ilfor l ∈ L do // transition sourefor t ∈ Ol dofor l̃ ∈ L do // transition target

t̃← t // opy tokenif ∃j : Rj = Rk, j ∈ [1, k − 1] thenif t̃.f(Rk) = l̃ then
t̃.p← t̃.p× p(t̃.f(Rk)|t̃.f(R1:(k−1)))elsẽ
t.p← 0elseif ∀j : t̃.f(Rj) 6= l̃, j ∈ [1, k − 1] thenSet t̃.f(Rk)← l̃

t̃.p← t̃.p× p(t̃.f(Rk)|t̃.f(R1:(k−1)))elsẽ
t.p← 0Insert t̃ to Il̃for l ∈ L doRetain M best tokens in Ilfor l ∈ L do

Ol ← Ilfor t ∈ Ol do
t.p← t.p× πE(l)Selet token t̂ with the largest t.preturn t̂.f

2.3 Modelling IssuesThe main problem with N-gram models is the amount of training material neededfor estimating the transition probabilities: the amount inreases rapidly as afuntion of the number of possible states and the ontext length (given A possiblestates and ontext length of N , there exist AN probabilities to be estimated).It may happen that not all of the sequenes of the required length our in thetraining data. This situation an be handled by bak-o� (using shorter ontext at



6 Jouni Paulus and Anssi Klapurithose ases), or by smoothing (assigning a small amount of the total probabilitymass to the events not enountered in the training material).In some ases, it is possible that inreasing the length of the ontext does notprovide any information ompared to the shorter history. Variable-order Markovmodels (VMMs) have been proposed to replae traditional N-grams. Instead ofusing a �xed history, VMMs try to dedue the length of the usable ontext fromthe data. If inreasing the length of the ontext does not improve the predition,then only the shorter ontext is used. VMMs an be used to alulate the totalprobability of the sequene in the same manner as in Eq. (1), but using a variableontext length instead of �xed N . [9℄
3 EvaluationsPerformane of the labelling method was evaluated in simulations using stru-tural desriptions from real musi piees.
3.1 DataThe method was evaluated on two separate data sets. The �rst, TUTstruture07,was olleted at Tampere University of Tehnology. The database ontains a totalof 557 piees sampling the popular musi genre from 1980's to present day.3The musial struture of eah piee was manually annotated. The annotationonsists of temporal segmentation of the piee into musial parts and namingeah of the parts with musially meaningful labels. The annotations were doneby two researh assistants with some musial bakground. The seond data set,UPF Beatles, onsists of 174 songs by The Beatles. The original piee strutureswere annotated by musiologist Alan W. Pollak [8℄, and the segmentation timestamps were added at Universitat Pompeu Fabra (UPF)4.Though many of the forms are thought to be often ourring or stereotypialfor musi from pop/rok genre, the statistis from the data sets do not supportthis fully. In TUTstruture07, the label sequenes vary a lot. The three mostfrequently ourring strutures are� �intro�, �verse�, �horus�, �verse�, �horus�, �C�, �horus�, �outro�� �intro�, �A�, �A�, �B�, �A�, �solo�, �B�, �A�, �outro�� �intro�, �verse�, �horus�, �verse�, �horus�, �horus�, �outro�,eah ourring four times in the data set. 524 (94%) of the label sequenes areunique.With UPF Beatles, there is a learer top, but still there is a large body ofsequenes ourring only one in the data set. The most frequent label sequeneis3 List of the piees is available at<http://www.s.tut.�/sgn/arg/paulus/TUTstruture07_�les.html>.4 <http://www.iua.upf.edu/%7Eperfe/annotations/setions/liense.html>



Labelling the Strutural Parts of a Musi Piee with Markov Models 7� �intro�, �verse�, �verse�, �bridge�, �verse�, �bridge�, �verse�, �outro�,ourring seventeen times in the data set. 135 (78%) of the label sequenes areunique.3.2 Training the ModelsTransition probabilities for the models were trained using the data sets. Eahlabel sequene representing the struture of a piee was augmented with speiallabels �BEG� in the beginning, and �END� in the end. After the augmentation,the total number of ourrenes of eah label in the data set was ounted. Beausethere exists a large number of unique labels, some of whih our only one inthe whole data set, the size of the label alphabet was redued by using onlythe labels that over 90% of all ourrenes. The remaining labels were replaedwith an arti�ial label �MISC�. The zero-probability problem was addressed byusing Witten-Bell disounting (Method C in [11℄), exept for the VMMs.In the original data sets, there were 82 and 52 unique labels (without theaugmentation labels �BEG�, �END�, and �MISC�) in the data set of TUTstru-ture07 and UPF Beatles, respetively. After augmentation and set redution thelabel set sizes were 15 and 10. On the average, there were 6.0 unique labelsand 12.1 label ourrenes (musial parts) in a piee in TUTstruture07. Thesame statistis for UPF Beatles were 4.6 and 8.6. This suggests that the pieesin TUTstruture07 were more omplex or they have been annotated on a �nerlevel.3.3 Simulation SetupIn simulations, the strutural annotations from the data base were taken. Theoriginal label sequenes (with the �MISC� substitution) was taken as the groundtruth, while the input to the labelling algorithm was generated by replaing thelabels with letters.To avoid overlap in train and test sets whilst utilising as muh of the dataas possible, simulations were run using leave-one-out ross-validation sheme. Ineah ross-validation iteration one of the piees in the data set was left as thetest ase while the Markov models were trained using all the other piees. Thisway the model never saw the piee it was trying to label.With onventional N-grams, the length of the Markov hain was varied from1 to 5, i.e., from using just prior probabilities for the labels to utilising ontextof length 4. With VMMs, several di�erent algorithms were tested, inluding:deomposed ontext tree weighting (DCTW), predition by partial mathing -method C, and a variant of Lempel-Ziv predition algorithm. The implementa-tions for these were provided by [1℄. It was noted that DCTW worked the bestof these three, and the result are presented only for it. The maximum ontextlength for VMMs was set to 5. Also the maximum ontext lengths of 3 and10 were tested, but the former deteriorated the results and the latter produedpratially idential results with the hosen parameter value.



8 Jouni Paulus and Anssi KlapuriTable 1. Performane omparison on TUTstruture07 with traditional Markov modelsof di�erent order. The best VMM result is given for omparison. The given values arethe average hit rates in perents. The row average is the total average of orret partlabels. The best result on eah row is typeset with bold.label N=1 N=2 N=3 N=4 N=5 VMMhorus 68.1 76.3 80.8 76.6 74.9 78.5verse 42.3 62.4 64.4 64.9 66.0 66.0bridge 17.7 38.6 45.6 47.4 44.4 43.7intro 27.6 97.6 98.2 97.8 97.8 96.4pre-verse 4.2 40.7 46.3 43.3 41.7 43.3outro 13.9 98.3 98.6 97.8 92.1 98.3 0.0 38.0 42.1 47.4 54.8 49.3theme 0.0 0.0 2.7 4.4 3.3 3.3solo 0.0 4.4 7.2 16.0 18.2 14.9horus_a 0.0 0.0 7.5 15.7 11.2 3.0a 0.0 0.0 32.5 31.7 27.0 29.4horus_b 0.0 0.9 5.3 12.4 7.1 2.7MISC 12.6 29.5 38.3 37.1 40.3 38.3average 30.9 55.6 60.3 59.9 59.5 59.8
3.4 Evaluation MetrisWhen evaluating the labelling result, onfusion matrix C for the labels is al-ulated. The result of the best mapping funtion applied to the input sequene
f(R1:K) and the ground truth sequene S1:K are ompared. At eah label our-rene Si, i ∈ [1, K], the value in the element [Si, f(Ri)] of the onfusion matrixis inreased by one. This applies weighting for the more frequently ourring la-bels. The onfusion matrix is alulated over all ross-validation iterations. Theaverage hit rate for a target label was alulated as a ratio of orret assignments(main diagonal of onfusion matrix) to total ourrenes of the label (sum alongrows of the onfusion matrix).
3.5 ResultsThe e�et of varying the ontext length in N-grams is shown in Tables 1 and 2for TUTstruture07 and UPF Beatles, respetively. In addition to the di�erentN-gram lengths, the tables ontain also the result for the best VMM (DCTWwith maximum memory length of 5). The tables ontain the perentage of orretassignments for eah label used. The total average of orret hits (�average�) isalulated without the augmentation labels �BEG� and �END�.5Based on the results in Tables 1 and 2, it an be seen that inreasing theorder of traditional Markov model from unigrams to bigrams produe a large5 For an interested reader, the onfusion matries are given in a doument availableat <http://www.s.tut.�/sgn/arg/paulus/CMMR08_onfMats.pdf>.



Labelling the Strutural Parts of a Musi Piee with Markov Models 9Table 2. Performane omparison on UPF Beatles with traditional Markov models ofdi�erent order. The best VMM result is given for omparison. For desription of thedata, see the Table 1. label N=1 N=2 N=3 N=4 N=5 VMMverse 72.4 79.9 86.7 85.7 83.7 87.5refrain 30.1 32.1 62.2 66.3 68.7 70.7bridge 36.7 40.7 78.0 74.0 74.0 70.6intro 0.0 93.2 88.9 92.0 93.8 93.2outro 0.0 99.3 99.3 97.2 93.0 97.9verses 0.0 16.1 48.2 50.0 44.6 44.6versea 0.0 5.9 7.8 17.6 21.6 5.9MISC 0.0 15.9 22.3 25.5 23.6 22.3average 33.5 58.9 72.1 72.8 72.1 73.0
inrease in the performane. The performane ontinues to inrease when theontext length is inreased, but more slowly. With TUTstruture07, the per-formane peak is at N = 3, whereas with UPF Beatles, the maximum withtraditional N-grams an be obtained with N = 4. It was also noted that withTUTstruture07 the use of VMM did not improve the result. However, there isa small performane inrease with VMMs in UPF Beatles.Even though the use of VMM did not improve the result with TUTstru-ture07, there was one lear advantage with them: it was possible to use longerontext in the models. With traditional N-grams, the transition probabilitieswill beome very sparse even with bigrams. The large bloks of zero provide noinformation whatsoever and only onsume memory. With VMMs, the ontextlength is adjusted aording to the available information.From the results, it is notable that �horus� an be labelled from the inputover 80% auray, and �verse� almost at 65% auray in TUTstruture07. InUPF Beatles �verse� ould be labelled with 87% auray and �refrain� with 71%auray.3.6 DisussionIt should be noted that the proposed system performs the labelling purely basedon a model of sequential dependenies of musial parts. Inorporating someaousti information might improve the result somewhat (e.g., energeti repeatedpart might be �horus�). Also, the knowledge of the high-level musial ontent,suh as the lyris, instrumentation or hord progressions, ould provide valuableinformation for the labelling. However, the extration of these from the aoustiinput is still a hallenging task, as well as reating a usable model for them. Inaddition, when disussing the priniples used when assigning the ground truthlabels with the annotators, the main ue was the loation of the part in the �mu-sial language model�. Inorporating these other information soures in additionto the sequene model should be onsidered in the future work.



10 Jouni Paulus and Anssi KlapuriThe di�erene in performane between the two data sets remains partly anopen question. The main reason may be that the label sequenes in TUTstru-ture07 are more diverse, as ould be seen from the statistis presented in Se. 3.1(94% of sequenes in TUTstruture are unique, ompared to 78% in UPF Beat-les). We tested the hypothesis that is was due to the smaller label set (10 vs. 15)by using only as many of the most frequent labels as were used with UPF Bea-tles. As a slight surprise, the performane on the remaining set was even worseompared label-wise to the larger set. The average result, however, inreasedslightly beause the most rarely ourring (and most often mis-labelled) labelswere omitted.
4 ConlusionThis paper has proposed a method for assigning musially meaningful labelsto the parts found by musi struture analysis systems. The method models thesequential dependenies between musial parts with Markov models and uses themodels to sore di�erent label assignments. The paper has proposed applyingM-best token passing algorithm to the label assignment searh to be able toperform the assignment without having to test all possible permutations. Theproposed method has been evaluated with leave-one-out ross-validations on twodata sets of popular musi piees. The evaluation results suggest that the modelsfor the sequential dependenies of musial parts are so informative even at lowontext lengths that they an be used alone for labelling. The obtained labellingperformane was reasonable, even though the used model was relatively simple.
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