Drum transcription from multichannel recordings with non-negative matrix factorization

David S. Alves1,2, Jouni Paulus1, and José Fonseca2

1Department of Signal Processing, Tampere University of Technology, Finland
2Department of Electrical Engineering, New University of Lisbon, Portugal

Introduction

- Drum transcription: from audio input
 - determine temporal locations of drum sound events, and
 - recognise the played instruments.
- Earlier methods operate mainly on single-channel (or stereo) signals.
- In studios, multichannel recordings are available.
- Extend an existing method to multichannel signals.

Signal model

- Observed magnitude spectrogram X is a sum of N source signals:
 \[X = \sum_{n=1}^{N} X_n + \epsilon. \]
- Each source is assumed to be a product of two basis vectors (gain over time and magnitude on each frequency):
 \[X_n = s_n a_n^T. \]
- As a matrix product: $X \approx S A$, where $S = [s_1, s_2, \cdots, s_N]$ and $A = [a_1, a_2, \cdots, a_N]^T$.
- Inverse problem: solve S and A minimising reconstruction error given X.
- Non-negative matrix factorization (NMF) restricts all elements to be non-negative.
- An example factorization of a drum loop to three sources (X is a mel-frequency spectrogram):

Baseline method

- Calculate spectral templates S for each target drum (training phase).
- Solve time-varying gains A from input X keeping S fixed.
- Detect onsets from the gains A.

Multichannel extension

- Stack spectrograms X_c from C channels $c \in 1 \cdots C$ to $X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_C \end{bmatrix}$.
- Spectral template stacking:
 \[S = \begin{bmatrix} S_1 \\ S_2 \\ \vdots \\ S_C \end{bmatrix} = \begin{bmatrix} s_{1,1}, s_{1,2}, \cdots, s_{1,N} \\ s_{2,1}, s_{2,2}, \cdots, s_{2,N} \\ \vdots \\ s_{C,1}, s_{C,2}, \cdots, s_{C,N} \end{bmatrix} = \begin{bmatrix} \tilde{s}_1, \tilde{s}_2, \cdots, \tilde{s}_N \end{bmatrix}. \]

Results

- Evaluations with ENST drums data set
 - 3 drummers and drum kits (differing microphone setups with 7–8 mics), 64 tracks, average duration 55 s (30–75 s)
 - Transcribe bass drum (BD), snare drum (SD), and hi-hat (HH).
- Comparison to
 - a single-channel version operating on a mix-down, and
 - a naive onset detection based multichannel method (assuming each drum to have a close microphone).

Conclusions:

- Extend a drum transcription method using spectral templates to accept multichannel inputs.
- Performance increase from single-channel method \rightarrow channel information helps.
- Performance increase from naive onset detection method \rightarrow spectral information helps (and no dependency on having close microphones on all targets).