MPEG-D SPATIAL AUDIO OBJECT CODING FOR DIALOGUE ENHANCEMENT (SAOC-DE)

Fraunhofer IIS
OUTLINE

- Introduction to Spatial Audio Object Coding
- Dialogue enhancement
 - Concept
 - Technical solution
- Evaluation: subjective listening test
- Demonstration
- Conclusions
Spatial Audio Object Coding (SAOC)

- SAOC is an efficient way for coding audio objects
- A semantic pre-/post-processor to other audio codecs
Dialogue Enhancement (DE) – Legacy decoder
Dialogue Enhancement (DE) – SAOC-DE decoder
Wimbledon 2011 experiment with BBC

- Public test during Tennis Grand Slam Championships 2011 in Wimbledon
- Player provided on BBC website
- User control for dialogue vs. background balance
- Well-received: >80% of people answering the questionnaire indicated the effect of this functionality to be positive
Dialogue enhancement functionality benefits

- Improving intelligibility of dialogue by background attenuation
 - Hearing-impaired audience
 - Non-native audience
 - Noisy listening environments
- Reducing dialogue level
 - Custom mixture, e.g., focusing on sports event atmosphere sounds
- Allows addressing complaints in broadcast regarding dialogue mixing levels
Adapting MPEG-D SAOC for DE-application needs

- Adding support for more than 2 downmix channels
 - In 5.1, dialogue is normally present in the 3 front channels
- Disable functionality not needed by the application
 - Reduction in engineering and computational complexity

- 2 meta-objects: foreground (FGO), background (BGO)
- Restrict rendering functionality to in-place re-balancing of FGO and BGO
 - Number of output channels = number of downmix channels
 - No object re-panning
SAOC-DE decoder overview
Signal model

- Downmix signal obtained with instantaneous linear mixing
 \[X = DS = X_{BGO} + X_{FGO} \]

- Target output signal: re-balanced mix of partial downmixes
 \[\hat{X} \approx m_{BGO} X_{BGO} + m_{FGO} X_{FGO} \]

- The gains determined from single user input \(m_G \)
 - The re-balancing gain to be applied to FGO (dialogue)
 - Applied as attenuation only to avoid clipping
Object reconstruction

- Parametric object reconstruction
 \[\hat{S} = G X \approx S \]

- Un-mixing matrix
 \[G = ED^* \left(DED^* \right)^{-1} \]

- Object covariance \(E \) and downmixing matrix \(D \) obtained from SAOC side information (object level differences, inter-object correlations, etc.)

- Enhanced Audio Object (EAO) reconstruction
 - Include waveform residual signal(s) for improving perceptual quality of output
 - Residual signals focused on FGO (i.e., dialogue signal)
 \[X_{res} = S_{FGO} - \hat{S}_{FGO} \]
Modification Range Control (MRC)

- Rendering gain interface allows full separation of partial downmixes of FGO and BGO
 - Rights-management issues
 - Quality control concerns
- MRC values in bitstream restrict the range of the user input gain
- Content-provider retains control over the allowed modifications
 - Keep modification in a safe region
Main differences from classic MPEG-D SAOC

- Increased maximum number of downmix channels to 3 (from 2)
 - Generalized object reconstruction algorithms to support higher number of downmix channels
- Simplified rendering interface
 - In-place gain change of two meta-objects
 - Single gain rendering control input instead of a full rendering matrix
- Significant complexity reduction
 - Disabled un-used tools and modes (e.g., decorrelators)
 - Limited number of objects to 6 (from 32)
- Replaced DCU with MRC
- Removed MPEG Surround transcoding
Subjective listening test with MUSHRA

- Material similar to broadcast content
 - Stereo background (music, sound effects, audience noise)
 - Mono dialogue foreground panned to center
 - Downmix (stereo) SNR 1.5 – 7.5 dB

<table>
<thead>
<tr>
<th>Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR</td>
<td>Original objects mixed with target gains</td>
</tr>
<tr>
<td>HE-AAC REF</td>
<td>“HR” encoded with HE-AAC at 64 kbps</td>
</tr>
<tr>
<td>HE-AAC MO</td>
<td>Multi-Object transmission (discrete objects, 43+21=64 kbps)</td>
</tr>
<tr>
<td>HE-AAC DE</td>
<td>SAOC-DE and HE-AAC encoded downmix (64 kbps)</td>
</tr>
<tr>
<td>HE-AAC DE+</td>
<td>SAOC-DE bitrate on top of dmx bitrate (64+SAOC kbps)</td>
</tr>
<tr>
<td>LP35</td>
<td>3.5 kHz low-pass anchor</td>
</tr>
</tbody>
</table>
FGO +6 dB (parametric-only, 10 listeners, 64 kbps)
FGO +12 dB (with EAO processing, 10 listeners, 64 kbps)
Demonstration
Conclusions

- SAOC-DE extends MPEG-D SAOC for dialogue enhancement applications
- It is answering the request from broadcasting industry
 - Providing a backward compatible extension to existing services
- Good performance in subjective evaluations
- Technical solution standardized as an amendment to MPEG-D SAOC
- Included as “Advanced Clean Audio” solution in DVB
 - ETSI TS 101 154 v2.2.1